Finite Element Model of Cornea Deformation
نویسندگان
چکیده
Cornea surgeons have observed that changes in cornea curvature can follow cataract surgery and cause astigmatism. The placement of surgical incisions has been shown to influence these curvature changes. Though empirical data has been collected about this phenomenon, a biomechanical model has not been employed in predicting post-surgical outcomes. This work implemented an incised finite element model of the eye to investigate factors influencing corneal shape after surgery. In particular, the effects of eye muscle forces and intra-ocular pressure were simulated. Cornea shape change was computed via finite element analysis, and the resulting change in cornea curvature was measured by fitting quadratic curves to the horizontal and vertical meridians of the cornea. Results suggest that these two sources of deforming force counteract each other and contribute to astigmatism in perpendicular directions.
منابع مشابه
An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams
Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...
متن کاملPREDICTION OF STATIC SOFTENING OF MICROALLOYED STEEL BY THE INTEGRATION OF FINITE ELEMENT MODEL WITH PHYSICALLY BASED STATE VARIABLE MODEL
Abstract Recovery and recrystallization phenomena and effects of microalloying elements on these phenomena are of great importance in designing thermomechanical processes of microalloyed steels. Thus, understanding and modeling of microstructure evolution during hot deformation leads to optimize the processing conditions and to improve the product properties. In this study, finite element...
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملHygrothermal Analysis of Laminated Composite Plates by Using Efficient Higher Order Shear Deformation Theory
Hygrothermal analysis of laminated composite plates has been done by using an efficient higher order shear deformation theory. The stress field derived from hygrothermal fields must be consistent with total strain field in this type of analysis. In the present formulation, the plate model has been implemented with a computationally efficient C0 finite element developed by using consistent strai...
متن کاملFailure Prediction during uniaxial Superplastic Tension using Finite Element Method
Superplastic materials show a very high ductility. This is due to both peculiar process conditions and material intrinsic characteristics. However, a number of superplastic materials are subjected to cavitation during superplastic deformation. Evidently, extensive cavitation imposes significant limitations on their commercial application. The deformation and failure of superplastic sheet metals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 8 Pt 2 شماره
صفحات -
تاریخ انتشار 2005